
1. Introduction
Overview of AI & ML in .NET
Artificial Intelligence (AI) and Machine Learning (ML) are transforming software development, enabling intelligent applications that can learn, reason, and interact naturally. The .NET ecosystem provides robust tools for AI/ML development, including ML.NET for custom models, Azure AI for cloud-based services, and frameworks like Semantic Kernel for AI orchestration.
Why Use .NET for AI/ML?
- Performance: Optimized for high-speed execution with C# and F#.
- Enterprise Readiness: Strong support for large-scale applications.
- Integration: Seamless compatibility with cloud services (Azure AI) and popular ML frameworks (TensorFlow, ONNX).
- Developer-Friendly: Familiar tools like Visual Studio and .NET CLI simplify AI development.
Key Technologies Covered
- ML.NET – Open-source ML framework for .NET.
- Azure AI – Cloud-based AI services (OpenAI, Computer Vision, Speech).
- OpenAI Integration – GPT-4, ChatGPT, and DALL·E in .NET.
- LangChain.NET – Framework for AI-powered agents.
- Semantic Kernel – AI orchestration for copilot-like applications.
2. Getting Started with ML.NET
What is ML.NET?
ML.NET is an open-source, cross-platform machine learning framework for .NET developers. It enables training custom models without requiring deep expertise in data science.
Key Features
- Custom Model Training (Regression, Classification, Clustering).
- AutoML – Automatically selects the best algorithm.
- TensorFlow & ONNX Integration – Use pre-trained models.
Example: Building a Simple ML Model in C#
// Step 1: Load data
var context = new MLContext();
var data = context.Data.LoadFromTextFile<SentimentData>("reviews.csv", separatorChar: ',');
// Step 2: Define pipeline
var pipeline = context.Transforms.Text.FeaturizeText("Features", nameof(SentimentData.Text))
.Append(context.BinaryClassification.Trainers.SdcaLogisticRegression());
// Step 3: Train model
var model = pipeline.Fit(data);
// Step 4: Predict
var predictionEngine = context.Model.CreatePredictionEngine<SentimentData, SentimentPrediction>(model);
var prediction = predictionEngine.Predict(new SentimentData { Text = "This product is great!" });
Console.WriteLine($"Prediction: {(prediction.IsPositive ? "Positive" : "Negative")}");
3. Leveraging Azure AI Services
Overview of Azure AI
Azure AI provides pre-built AI services for vision, speech, language, and decision-making.
Key Services
- Azure OpenAI (GPT-4, embeddings, fine-tuning).
- Computer Vision (Image recognition, OCR).
- Speech Services (Speech-to-text, text-to-speech).
- Language Understanding (LUIS) – NLP for intent detection.
Example: Calling Azure AI APIs from .NET
var client = new OpenAIClient(new Uri("https://your-resource.openai.azure.com/"), new AzureKeyCredential("your-key"));
var response = await client.GetCompletionsAsync("gpt-4", "Explain AI in .NET in one sentence.");
Console.WriteLine(response.Value.Choices[0].Text);
4. Integrating OpenAI with .NET
Using OpenAI API in C#
- GPT-4 & ChatGPT – Text generation & conversation.
- DALL·E – Image generation.
Libraries
- OpenAI .NET Client (Community library).
- Azure.AI.OpenAI SDK (Official Microsoft SDK).
Example: Chatbot with OpenAI
var openAi = new OpenAIService(new OpenAiOptions { ApiKey = "your-key" });
var response = await openAi.ChatCompletion.CreateCompletion(new ChatCompletionCreateRequest
{
Messages = new List<ChatMessage> { new("user", "Hello, how are you?") },
Model = "gpt-4"
});
Console.WriteLine(response.Choices[0].Message.Content);
5. Building AI Agents with LangChain in .NET
What is LangChain?
A framework for building AI-powered applications with memory, tools, and retrieval-augmented generation (RAG).
LangChain.NET Use Cases
- Document QA (Chat with PDFs using embeddings).
- AI Agents (Autonomous agents with tools).
Example: LangChain-based AI Assistant
var llm = new OpenAI(apiKey: "your-key");
var chain = Chain.Set("What is ML.NET?") | llm;
var response = await chain.Run();
Console.WriteLine(response);
6. Semantic Kernel for AI Orchestration
What is Semantic Kernel?
Microsoft’s framework for AI orchestration, enabling copilot-like applications.
Key Features
- Planner – Automates AI workflows.
- Memory – Vector storage for contextual AI.
- Connectors – OpenAI, Azure AI, custom plugins.
Example: Building a Copilot App
var kernel = Kernel.CreateBuilder()
.AddOpenAIChatCompletion("gpt-4", "your-key")
.Build();
var result = await kernel.InvokePromptAsync("Explain Semantic Kernel in .NET.");
Console.WriteLine(result);
7. Real-World Use Cases & Demos
- Customer Support Chatbot (ML.NET + OpenAI + LangChain).
- Document Intelligence (Azure AI + Semantic Kernel).
- Predictive Analytics (ML.NET AutoML for sales forecasting).
8. Best Practices & Performance Optimization
- Choosing Between ML.NET vs. Cloud AI (On-prem vs. cloud).
- Optimizing Models (Hyperparameter tuning, ONNX acceleration).
- Security (API key management, data encryption).
9. Future of AI/ML in .NET
- ML.NET Improvements (Better AutoML, deep learning support).
- Semantic Kernel Evolution (More plugins, multi-agent systems).
- Generative AI in .NET (More OpenAI & open-model integrations).
10. Conclusion & Resources
Key Takeaways
- ML.NET enables custom ML models in C#.
- Azure AI provides ready-to-use AI services.
- OpenAI, LangChain, and Semantic Kernel enhance AI capabilities.